位置:成果数据库 > 期刊 > 期刊详情页
机场环境威胁态势信息在语义空间的统一建模及其导航应用
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术]
  • 作者机构:[1]西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室,四川成都611756, [2]西南交通大学地球科学与环境工程学院,四川成都611756, [3]四川省基础地理信息中心,四川成都610041
  • 相关基金:国家自然科学基金(41471320); 国家863计划(2013AA122301); 高分专项(民用部分)重大专项(03-Y30B06-9001-13/15); 测绘地理信息公益性行业科研专项(201412010); 四川省科技支撑计划(2014SZ0106)
中文摘要:

为了避免灾情误判和误报,准确探测和剔除滑坡形变监测数据中的粗差已经成为提高监测数据质量亟待解决的问题。已有方法主要针对单一传感器数据独立处理,且过度依赖数据变化本身的突变-平滑关系,难以有效区分粗差和外界因素突变引起的奇异值。介绍了一种知识引导的滑坡监测数据粗差剔除方法,通过粗糙集属性约简筛选具有相关关系的多源滑坡观测数据,并结合多元统计理论挖掘粗差影响因素间的时空约束关系,利用不同类型滑坡监测数据变化间的相关性规律,将多因素影响下的滑坡形变抽象为多模式的组合,根据不同模式自适应选择多因子模型以此引导卡尔曼滤波模型更新,从而实现滑坡形变监测粗差的定位与剔除。实验证明,该方法不仅能够有效甄别因环境变化引起的突变,并且能显著提高滑坡形变监测数据粗差自适应剔除的准确性、可靠性与智能化水平。

英文摘要:

In order to avoid the disaster misjudgment and incorrect reports of landslide disaster, the detection and elimination of the gross errors of landslide monitoring data, has become a critical issue for the observational data quality control. The traditional data filtering methods using curve character- istics of single data source, which are limited by the characteristic of mutations-smooth relations and it is also hard to effectively distinguish the gross error and singular value induced by external factors. To overcome these problems, an approach for gross errors detection and elimination guided by land- slide knowledge is proposed in this paper. Experimental results prove that more accurate and reliable landslide deformation information can be available. And proposed method can improve the automation and intelligent level of the gross errors detection and elimination for landslide monitoring data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217