利用泛函积分量子化方法研究了2个平行的、理想的金属线之间在有限温度下Maxwell—Chern-Simons规范场的Casimir熵.分别讨论了低温和高温2种极限情况下的Casimir熵.给出了Maxwell—Chern—Simons规范场的质量为零时的高温和低温的Casimir熵的表达式.结果显示,在绝对零度下,Maxwell—Chern—Simons规范场的Casimir熵等于零,满足热力学第三定律.
In this paper,the Casimir entropy of Maxwell-Chern-Simons Abelian gauge field is discussed at nonzero temperature between two parallel ideal conducting wires by using the Feynman path integral method. The limiting cases for low and high temperature for the Casimir entropy are separately considered. Casimir entropy is obtained in the case of massless limit. The results show that the Casimir entropy is equal to zero at zero temperature, i. e. , the third law of thermodynamics is satisfied.