位置:成果数据库 > 期刊 > 期刊详情页
OPTIMALITY OF LOCAL MULTILEVEL METHODS FOR ADAPTIVE NONCONFORMING P1 FINITE ELEMENT METHODS
  • ISSN号:0254-9409
  • 期刊名称:《计算数学:英文版》
  • 时间:0
  • 分类:TP311.132[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术] O241.82[理学—计算数学;理学—数学]
  • 作者机构:[1]LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100190, China, [2]School of Mathematical Sciences, Xiamen University, Xiamen 361005, China, [3]LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China, [4]Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA, [5]Institute for Mathematicd, University of Augsburg, D-86159, Augsburg, Germany
  • 相关基金:Acknowledgements. The work of the first author was supported by the National Basic Research Program under the Grant 2011CB30971 and National Science Foundation of China (11171335). The work of the second author was supported by the National Natural Science Foundation of China (Grant No. 11201394) and the Fundamental Research Funds for the Central Universities (Grant No. 2012121003).
中文摘要:

在这份报纸,一个本地 multilevel 产品算法和它的添加剂版本为从第二份订单的适应 nonconforming P1 有限元素近似产生的线性系统被考虑椭圆形的边界价值问题。抽象 Schwarz 理论被使用与在最好的网孔上在粗糙的网孔和全球节点上在本地节点上执行的 Jacobi 或 Gauss-Seidel smoothers 分析 multilevel 方法。本地 multilevel 方法是最佳的,这被显示出,即, multilevel 方法的集中率独立于网孔尺寸和网孔层次。数字实验被给证实理论结果。[从作者抽象]

英文摘要:

In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算数学:英文版》
  • 主管单位:
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:
  • 地址:北京2719信箱
  • 邮编:100080
  • 邮箱:
  • 电话:
  • 国际标准刊号:ISSN:0254-9409
  • 国内统一刊号:ISSN:11-2126/O1
  • 邮发代号:
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库
  • 被引量:193