位置:成果数据库 > 期刊 > 期刊详情页
结合最近邻与闭模式子空间聚类方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工程大学计算机科学与技术学院,哈尔滨150000, [2]呼伦贝尔职业技术学院信息工程系,内蒙古呼伦贝尔021000
  • 相关基金:国家自然科学基金(No.61272185,No.61502037);黑龙江省自然科学基金(No.F201340);基础科研项目(No.JCKY2016206B001,No.JCKY2014206C002).
中文摘要:

针对传统距离度量在高维数据上效果不明显问题,提出一种共享最近邻子空间聚类算法(SNN_SC),按照维把数据集转变为多个最近邻事务数据库,挖掘事务数据库中最大共现对象集,即一维上聚类。在一维聚类集上进一步挖掘闭频繁项集,包含闭频繁项集的维是子空间,闭频繁项集是子空间上聚类。实验对比结果表明,SNN_SC能够更准确定位子空间,并在子空间上产生完整聚类。

英文摘要:

According to the measurement results in high dimensional data is not obvious problems of the traditional distance,proposes a shared nearest neighbor subspace clustering algorithm(SNN_SC),according to the dimension of the data set into multiple nearest neighbor transaction database mining in transaction database maximum co-occurrence object set,namely dimension clustering.On the one dimensional clustering set,the closed frequent itemsets are further exploited.The dimension of the closed frequent itemsets is a subspace.The experimental results show that SNN_SC can more accurately locate the subspace,and generate a complete clustering in subspace.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887