位置:成果数据库 > 期刊 > 期刊详情页
利用RJMCMC算法的可变类SAR图像分割
  • ISSN号:1003-0530
  • 期刊名称:《信号处理》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]辽宁工程技术大学测绘与地理科学学院遥感科学与应用研究所,辽宁阜新123000
  • 相关基金:国家自然科学基金青年科学基金项目(41301479);国家自然科学基金面上项目(41271435)
中文摘要:

自动确定地物类别数是SAR图像分割方法研究的重点和难点问题,为此,提出一种自动确定类别数的SAR图像分割算法。首先假定SAR图像中各像素强度服从同一独立的Gamma分布并以此建立图像模型;根据贝叶斯定理构建刻画图像分割的后验概率模型;设计RJMCMC(Reversible Jump Markov Chain Monte Carlo)算法模拟该后验概率模型,以确定图像类别数并同时完成区域分割。在提出的RJMCMC算法中,设计的移动操作类型包括:分裂或合并实类、改变参数矢量、改变标号及生成或删除空类。为了验证提出的可变类分割算法,分别对真实及模拟SAR图像进行可变类分割实验,定性及定量精度评价结果表明该算法的可行性及有效性。

英文摘要:

In SAR image segmentation, automatically determining the number of classes is a critical and difficult problem. To this end, this paper presents a statistics based SAR image segmentation approach which can automatically determine the number of classes and segment the image simultaneously. First of all, a given SAR image is modeled on the assumption that intensities of its pixels satisfy identical and independent Gamma distributions. The Bayesian paradigm is fol- lowed to build image segmentation model. Then a BJMCMC (Reversible Jump Markov Chain Monte Carlo) scheme is uti- lized to govern the segmentation model, which determines the number of classes and segments the image. In the proposed RJMCMC algorithm, four move types are designed, including splitting or merging real classes, updating parameter vector, updating label field, birth or death of an empty class. In order to verify the proposed algorithm, testing is carried out with real and simulated SAR images, respectively, and the results show that the proposed algorithm works well and efficient.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信号处理》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:谢维信
  • 地址:北京鼓楼西大街41号
  • 邮编:100009
  • 邮箱:xhclfh@sohu.com
  • 电话:010-64010656
  • 国际标准刊号:ISSN:1003-0530
  • 国内统一刊号:ISSN:11-2406/TN
  • 邮发代号:80-531
  • 获奖情况:
  • 国家一级科技期刊
  • 国内外数据库收录:
  • 美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10219