针对拦截空中飞行目标需要满足零脱靶量和攻击角约束提高导弹制导性能等问题,首先,利用考虑噪声干扰的扩张状态观测器对目标加速度进行估计,其次,改进一种非奇异终端滑模面,将自动驾驶仪视为理想环节,然后,基于终端滑模控制理论和有限时间收敛理论推导一种滑模制导律,最后,考虑自动驾驶仪二阶动态特性,将得到的滑模制导律结合动态面控制法提出一种新型制导律。分别以不同的攻击角对机动飞行和匀速飞行的目标进行拦截,大量仿真表明,所提制导律具有良好的制导性能,能够保证导弹在零脱靶量击中目标的同时达到期望攻击角。
Interception of air targets requires zero miss-distance and impact angle constraint to improve the missile guidance performance. First,the acceleration of the target was estimated by extended disturbance observer which also considered the noise interference. Second,a nonsingular terminal sliding mode surface was improved,which considered autopilot ideally. Third,a sliding-mode guidance law was designed based on the terminal sliding mode control theory and the theory of finite time convergence. Finally,considering the second-order dynamic characteristics of autopilot,the novel guidance law was developed combining both sliding-mode guidance law and dynamic surface control method. In simulation experiments,both maneuvering targets and constant velocity targets were intercepted with different impact angle. A large number of simulation results demonstrate that the proposed guidance law canguarantee that the missile hits the target and at the same time achieves a desired angle of impact,which performs well.