位置:成果数据库 > 期刊 > 期刊详情页
基于改进FCM算法的卫星云图聚类方法研究
  • ISSN号:1001-8891
  • 期刊名称:红外技术
  • 时间:2013
  • 页码:150-154
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学自动化学院,江苏南京210016
  • 相关基金:国家自然科学基金(编号:61074161)
  • 相关项目:基于非因果和分数阶次信号处理的边缘检测新方法
中文摘要:

卫星云图是研究天气系统演变规律的重要信息,云层内容从卫星云图中提取出来可以有助于云图分析,减少陆地和海洋信息的干扰。为此采用了模糊C均值聚类算法(FCM)进行云图聚类,该算法具有计算效率高,过程简单的优点,但对初始聚类中心敏感,容易陷入局部最优解。针对此问题,本文将全局性良好的粒子群优化算法(PSO)引入FCM聚类算法,克服了初始聚类中心对全局收敛性的影响。同时,将阴影集理论与该混合算法结合起来,去除聚类过程中的异常值,提高算法的效率。通过红外云图聚类对比实验得出,改进的FCM算法与传统的FCM算法相比,聚类结果图的类间距离增大,类内距离减小,聚类质量有所提高。

英文摘要:

Nephograms can be used to analyze the distribution of the cloud system in a large area, and to study the evolvement rules of weather system. We can analyze the nepbograms without the interference of terrestrial and marine information by extract the clouds content from the nephograms. So fuzzy C-means(FCM) algorithm is used for satellite image clustering. The method is easy to understand, but it always converges to the local infinitesimal values. So PSO was introduced to FCM algorithm, which can find a globally optimal fuzzy segmentation so as to avoid the sensitivities of basic FCM algorithm to initial values. In order to improve the speed of the algorithm, the shadow sets algorithm was combined with FCM, which can remove boundary values and abnormal values. The results show that the clustering effect of the newly-proposed algorithm is better than the one of the basic FCM.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国兵器工业集团公司
  • 主办单位:昆明物理研究所 中国兵工学会夜视技术专业委员会 微光夜视技术重点实验室
  • 主编:苏君红
  • 地址:昆明市教场东路31号
  • 邮编:650223
  • 邮箱:irtek@china.com
  • 电话:0871-5105248
  • 国际标准刊号:ISSN:1001-8891
  • 国内统一刊号:ISSN:53-1053/TN
  • 邮发代号:64-26
  • 获奖情况:
  • 2006兵器集团一等奖,2004、2009年云南省优秀期刊
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8096