设X,Y是给定的Banach空间,对A∈B(X),B∈B(Y),C∈B(Y,X),以Mc记X+Y上的算子(A0 CB),利用局部谱理论的工具给出关于A,B成立σ,(Mc)=σ,(A)∪σ.(B)(σ*∈{ab,σw,σD})的一些充分条件,同时给出例子说明所给的充分条件不同于Djordjevic S.V.,Zguitti H.和Zhang Y.N.等人所给的充分条件.
For A ∈ B(X),B ∈ B(Y),C ∈ B(Y,X) , let Mc be the operator defined on X+Y by (A0 CB).Give some sufficient conditions for the equality σ. (Me) = σ. (A) ∪σ. (B) (where σ*. {σb,σw,σD}) to be hold by means of local spectral theory. Also give some examples to illustrate that results are different from the conditions given by Djordjevic S. V. , Zguitti H. and the conditions given by Zhang Y. N..