位置:成果数据库 > 期刊 > 期刊详情页
结合排序向量SVM的视频跟踪
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TN911[电子电信—通信与信息系统;电子电信—信息与通信工程] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学信息与电子工程学系,浙江杭州310027
  • 相关基金:国家自然科学基金资助项目(61471321);国家“973”重点基础研究发展规划资助项目(2012CB316400);中兴通讯资助项目.
中文摘要:

针对真实视频场景中复杂的目标外观变化问题,提出新的结合排序向量SVM(RV-SVM)的单目标视频跟踪算法.基于压缩感知理论,利用稀疏测量矩阵压缩多尺度图像特征.采用Median-Flow跟踪算法作为预测器,并为RV-SVM构建训练数据集,使算法能够适应真实场景中遇到的目标遮挡、3D旋转和目标快速移动等复杂情况.通过在线学习RV-SVM算法,对候选位置集进行排序,找到目标的真实位置.对不同视频序列的测试结果表明:该方法可以在目标运动、旋转以及光照和尺度发生变化的情况下实现准确的跟踪.

英文摘要:

A novel single object video tracking algorithm with ranking vector SVM (RV-SVM) was proposed for complex changes of object appearance in realistic scenarios. A sparse measurement matrix based on compressive sensing theory could compress the multi-scale image features. A Median-Flow tracker algorithm was used as a predictor and to construct training data sets for RV-SVM algorithm, so that the algorithm could adapt complex conditions like object occlusion, 3D rotation and fast object motion. The real position of target was determined through training the RV-SVM algorithm online and ranking the candidate position set. Results of tests on variant video sequences show that the algorithm can achieve stable tracking either the object is moving, rotating or the illumination and scale is changing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198