以天然石墨为起始原料,采用改进的Hummer方法,通过强酸氧化水解和超声分散制备了氧化石墨烯,然后通过肼还原和重氮化反应得到含有羟基的石墨烯(G—OH),再通过酯化反应在石墨烯表面上引入了α-氯代羰基,从而得到了含有单电子转移活性自由基聚合(SET—LRP)引发基团的石墨烯(G—Cl),最后,在石墨烯表面原位引发N,N-甲基丙烯酰胺(DMAA)单体的SET-LRP聚合,得到了G-PDMAA复合材料,G-PDMAA在常规的有机溶剂和水中具有良好的分散性。
Exfoliated graphene oxide (GO) sheets were prepared from natural graphite by a modified Hturlmer's method, which included oxidative hydrolysis under strong acidic conditions and ultrasonic dispersing. GO was firstly reduced by hydrazine and then followed by a diazonium addition reaction to give graphene containing hydroxyls (G-OH), which was converted to graphene with singel eclectron transfer-living radical polymerization (SET-LRP) initiating groups via esterification with 2-chloropropionyl chloride. Finally, poly(N,N-dimethylacrylamide) (PDMAA) chains were grown from the surface of graphene via in situ SET-LRP to obtain graphene/PDMAA (G-PDMAA) nanocomposite. G-PDMAA nanocomposite showed good dispersity in common organic solvents and aqueous solution.