肌肉协同模型是神经产生并控制运动的低维度结构,探讨不同动作任务下的表面肌电信号(sEMG)间的相干性分析,可以体现相应肌群的协同耦合关系,进而能从神经控制运动与肌肉相互配合协调的角度揭示运动产生与执行规律。组织8名年轻健康受试者(男女均半、20-24岁)进行上肢腕部屈、伸实验,采集动作时相应肌群的sEMG数据,引入非负矩阵分解(NMF)方法分析肌间协同性,并进一步对协同性较高的肌群采用一致性分析方法,研究信号beta(15-35Hz)和gamma(35-60Hz)频段的耦合强度关系,探讨腕部伸屈动作下不同受试者之间的协同一耦合性差异。结果表明:腕伸动作下,主动肌桡侧腕短伸肌(ECR)、指伸肌(ED)、尺侧腕伸肌(ECU)、肱桡肌(B)在协同模块W5中具有协同关系,且肌间耦合强度显著(P〈0.05),beta频段与gamma频段一致性显著面积相差较大(1.261±0.966);腕屈动作下,分别在协同模块W1W4W5中存在具有协同关系的肌肉对,且肌肉间耦合强度显著(P〈0.001),在beta和gamma频段一致性显著面积相差较小(0.412±0.163),但主动肌桡侧腕屈肌、指浅屈肌间不具有协同性,耦合关系较弱。以上说明:神经控制运动的方式不同,体现为肌肉协同-耦合关系有所差异;在同一协同模块中,协同性较高的肌肉间耦合关系较强,揭示神经控制运动规律与肌肉相互配合方式;运用此方法进行肌间协同-耦合联合分析,可望深入揭示中枢神经模块化协同控制运动机制,进一步为运动障碍患者功能分析和评价提供科学依据。
The muscle synergy model is a low-dimensional structure in which nerves produce and control motion. The aim of this work was to study whether the coherence of surface electromyography could reflect the synergy-coupling relationship of the muscle groups under different movements and reveal the laws of movement generation and execution from the point of neural control and muscle coordination. In this study, we chose eight young healthy subjects (4 men and 4 women, 20-24 years old) to perform the upper limb wrist flexion and extension experiments, the sEMG data from different muscle groups were collected during the action. This study analyzed synergy between muscles by nonnegative matrix factorization. The coherence analysis method was used to study intermuscular coupling relationship in the beta (15 -35 Hz) and gamma (35 -60 Hz) band with the signals of high synergy muscles, and the differences of synergy-coupling between different subjects under wrist flexion and extension were investigated. Results showed that active muscles of extensor carpi radialis (ECR) , extensor digitorum ( ED ) , extensor carpi ulnaris ( ECU ) and brachioradialis ( B ) had synergistic relationship in synergy model W5 under the wrist extension movement, the intensity of intermuscular coupling was significantlydifferent (P 〈 0.05) , and there was a significant difference in the value of coherence area between beta and gamma band ( 1. 261±0. 966). In the wrist flexion movement, intermuseular synergy appeared in synergy models W1 W4 W5 , the intensity of intermuscular coupling was significantly different (P 〈 0. 001 ) , and there was a nuance in the value of coherence area between beta and gamma band (0. 412 ±0. 163 ) , active muscles of flexor carpi radialis (FCR) and flexor digitorum superficialis (FDS) had no synergistic relationship, the intermuscular coupling relationship was small. Taken above together, there were differences in the neural control action, which showed the differen