高速多平面交换网络解决了其内部冲突问题,但需要相应的路由控制算法的辅助,否则,内部冲突不能彻底解决.这是因为包在输入级路由平面的选择不够恰当,容易导致路由冲突的产生,因此,根据冲突链路集的思想,给出一种Multi—log2N交换网络的控制算法.该算法控制分组在路由平面间的选择,不仅能够适用于RNB和SNB,还能实现单播和多播的控制,保障Multi—log2N完全实现无阻塞.另一方面,Multi—log2N消除了内部的链路冲突,提高了交换速率,但对其交换性能缺乏系统的理论分析.给出一种基于嵌入式马尔可夫链的分析模型,对Multi—log2N网络中队列的使用及分组在队列中的平均等待时间、平均队长等相关性能指标进行了系统的分析,为基于Multi—log2N的光交换节点的设计提供了良好的理论依据.
Although high-speed multi-plane switching networks have removed their internal conflict problem, a routing control algorithm is necessary for realizing conflict-free routing. Otherwise, the conflict phenomenon cannot be totally avoided. This is because the routing plane may be chosen inappropriately by the incoming packet at the input stage. Therefore, a control algorithm based on the idea of conflict links set is presented in this paper. This algorithm controls the allocation of packets among routing planes in the multi-log2N switching networks, and hence, the conflict-free routing is totally guaranteed. Moreover, it is not only applicable for the RNB and SNB, but also suitable for unicast and multicast. On the other hand, inner link conflicts are removed in multi-log2N networks. The switching efficiency is improved, but no performance analysis models can be used to analyze the switching performance of Multi-log2N switching networks. So an analysis model based on embedded Markov chain is proposed in this paper, and is adopted to analyze the queue management and the relevant performance measures in detail, such as the mean waiting time, queue length and the probability of packets loss. All these conclusions are capable of providing well theoretical support for the design of the optical switching architecture based on multi- log2N switching networks.