假若G=Zm1⊕Zm2⊕…⊕Zmr为(m1,m2,…,mr)型Abelian群,其中Zmi为mi阶的循环群且1≤i≤r,m1|m2|…|mr,S为G的满足0∈S=-S的生成子集.如果|S|>|G|/ρ,其中ρ≥[mr/2]且mr=e(G)为群G的所有元素的阶的最小公倍数,则ρS=G.更进一步作者推广了Klopsch与lev的一个结论,有:若G=Z2(?)Zm为(2,m)型Abelian群(m≥8),则t(m/2)(G)=0.
Suppose G = Zm1⊕Zm2⊕…⊕Zmr be an Abelian group of type(m1,m2,...,mr) (Zmi is a cyclic group of order mi,1≤i≤r,m1|m2|…|mr).Let S be a symmetrically closed set(S is symmetrically closed if 0∈S = -S) and a generating set of G.If |S|>|G|/p,where p≥[mr/2]and mr = e(G) denotes the least common multiple of the orders of all elements of group G,then pS = G.And if G = Z2⊕Zm is an Abelian group of type(2,m)(m≥8),then t(m/2)(G) = 0,which extends the related results of Klopsch and Lev.