位置:成果数据库 > 期刊 > 期刊详情页
人工合成铁、铝矿物和镁铝双金属氧化物对土壤砷的钝化效应
  • ISSN号:0253-2468
  • 期刊名称:《环境科学学报》
  • 时间:0
  • 分类:S859.796[农业科学—临床兽医学;农业科学—兽医学;农业科学—畜牧兽医] TB321[一般工业技术—材料科学与工程]
  • 作者机构:[1]Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences~Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, P.R. China, [2]Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China, [3]College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R.China
  • 相关基金:the financial support of the National Natural Science Foundation of China (41171255);the National Scientific and Technology Program during 12th Five-Year Plan period, China (2012BAD14B02)
中文摘要:

Seven inorganic amendment materials were added into arsenic(As) contaminated soil at a rate of 0.5%(w/w); the materials used were sepiolite, red mud, iron grit, phosphogypsum, ferrihydrite, iron phosphate, and layered double oxides(LDO). Plant growth trials using rape(edible rape, Brassia campestris L.) as a bio-indicator are commonly used to assess As bioavailability in soils. In this study, B. campestris was grown in a contaminated soil for 50 days. All of the inorganic amendments significantly inhibited the uptake of As by B. campestris. Following soil treatment with the seven aforementioned inorganic ammendments, the As concentrations in the edible parts of B. campestris were reduced by 28.6, 10.5, 8.7, 31.0, 47.4, 25.3, and 28.8%, respectively, as compared with the plants grown in control soil. The most effective amendment was ferrihydrite, which reduced As concentration in B. campestris from 1.84 to 0.97 mg kg–1, compared to control. Furthermore, ferrihydrite-treated soils had a remarkable decrease in both non-specifically sorbed As and available-As by 67 and 20%, respectively, comparing to control. Phosphogypsum was the most cost-effective amendment and it showed excellent performance in reducing the water soluble As in soils by 31% and inhibiting As uptake in B. campestris by 21% comparing to control. Additionally, obvious differences in As transfer rates were observed in the various amendments. The seven amendment materials used in this study all showed potential reduction of As bioavailability and influence on plant growth and other biological processes still need to be further explored in the long term.

英文摘要:

Seven inorganic amendment materials were added into arsenic (As) contaminated soil at a rate of 0.5% (w/w); the materials used were sepiolite, red mud, iron grit, phosphogypsum, ferrihydrite, iron phosphate, and layered double oxides (LDO). Plant growth trials using rape (edible rape, Brassia campestris L.) as a bio-indicator are commonly used to assess As bio- availability in soils. In this study, B. campestris was grown in a contaminated soil for 50 days. All of the inorganic amend- ments significantly inhibited the uptake of As by B. campestris. Following soil treatment with the seven aforementioned inorganic ammendments, the As concentrations in the edible parts of B. campestris were reduced by 28.6, 10.5, 8.7, 31.0, 47.4, 25.3, and 28.8%, respectively, as compared with the plants grown in control soil. The most effective amendment was ferdhydrite, which reduced As concentration in B. campestris from 1.84 to 0.97 mg kg-~, compared to control. Furthermore, ferrihydrite-treated soils had a remarkable decrease in both non-specifically sorbed As and available-As by 67 and 20%, respectively, comparing to control. Phosphogypsum was the most cost-effective amendment and it showed excellent performance in reducing the water soluble As in soils by 31% and inhibiting As uptake in B. campestris by 21% comparing to control. Additionally, obvious differences in As transfer rates were observed in the various amendments. The seven amendment materials used in this study all showed potential reduction of As bioavailability and influence on plant growth and other biological processes still need to be further explored in the long term.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《环境科学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院生态环境研究中心
  • 主编:汤鸿霄
  • 地址:北京2871信箱
  • 邮编:100085
  • 邮箱:hjkxxb@rcees.ac.cn
  • 电话:010-62941073
  • 国际标准刊号:ISSN:0253-2468
  • 国内统一刊号:ISSN:11-1843/X
  • 邮发代号:82-625
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:56074