针对同井采注水中电潜泵叶轮出现的冲蚀磨损问题,采用RNG k-ε湍流模型和离散相模型,实现对冲蚀磨损的数值模拟。通过对不同粒径和转速条件下叶轮的冲蚀磨损进行分析,得到了冲蚀磨损规律和磨损机理。研究结果表明,叶片凹面中心是最严重的冲蚀磨损区域;转速和砂粒粒径增大都会加剧冲蚀磨损,逐步使冲蚀磨损较严重的区域由凹面中部的一点逐步扩展到整个凹面;0.07 mm是冲蚀磨损迅速增强的临界点;数值模拟结果与验证结果吻合较好。因此,利用CFD预测潜油电泵叶轮的冲蚀磨损是可行的。
Based on RNG k - ε turbulence model and discrete phase model, and to realize the numerical simulation for the impact erosion in the electrical submersible pump impeller, we studied the impact erosion process with CFD software. Through the impact erosion analysis of the electrical submersible pump impeller according to the different particle sizes and impeller speed, we obtained the law and mechanism of the impact erosion. The results show that the main position of erosion is the center of the concave leaf blade. The impact erosion will be worse with the increasing in the sand particle size and increasing impeller speed. 0.07 mm is the critical diameter of the erosion's intensify. The numerical simulation result was verified by a comparison test, which proves that CFD is applicable to the prediction of the particle impact erosion within electric submersible sump.