位置:成果数据库 > 期刊 > 期刊详情页
Affective Image Colorization
  • ISSN号:1000-9000
  • 期刊名称:Journal of Computer Science and Technology
  • 时间:2012.11.11
  • 页码:1119-1128
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] U443.38[建筑科学—桥梁与隧道工程;交通运输工程—道路与铁道工程]
  • 作者机构:[1]Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China, [2]Academy of Art & Design, Tsinghua University.Beijing 100084, China
  • 相关基金:Th:ls work is supported by the National Basic Research 973 Program of China under Grant No. 2011CB302201, the National Natural Science Foundation of China under Grant Nos. 61003094 60931160443. This work is also funded by Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-Discipline Foundation of China, and supported by the Innovation Fund of Tsinghua-Tencent Joint Laboratory of China.
  • 相关项目:汉语言语听障评估关键技术的研究
中文摘要:

灰阶的图象的 Colorization 很长时间吸引了许多注意。图象颜色的一个重要角色是情感的 conveyer (通过颜色主题) 。有一个不希望得到的颜色主题的 colorization 是不太有用的,甚至它是语义上正确的。然而,这很少被考虑了。尊重语义和情感的自动 colorization 无疑是挑战。在这份报纸,我们为感情方面的图象 colorization 建议一个完全的系统。我们仅仅需要用户与文本标签和一个感情方面的词一起帮助对象分割。首先,与另外的对象字符一起的文本标签联合被用来过滤因特网图象给每个对象一套语义上正确的引用图象。第二,我们基于艺术理论根据感情方面的词选择一套颜色主题。与这些主题,一个通用算法被用来为每个目标选择最好的参考书,平衡各种各样的要求。最后,我们为 colorization 建议一条混合质地合成途径。就我们的知识而言,是第一个系统能高效地由感情上可控制的时尚语义上加色一幅灰阶的图象。我们的实验显示出我们的系统的有效性,特别利益与以前的 Markov 随机的地(MRF ) 相比基于方法。

英文摘要:

Colorization of gray-scale images has attracted many attentions for a long time. An important role of image color is the conveyer of emotions (through color themes). The colorization with an undesired color theme is less useful, even it is semantically correct. However this has been rarely considered. Automatic colorization respecting both the semantics and the emotions is undoubtedly a challenge. In this paper~ we propose a complete system for affective image colorization. We only need the user to assist object segmentation along with text labels and an affective word. First, the text labels along with other object characters are jointly used to filter the internet images to give each object a set of semantically correct reference images. Second, we select a set of color themes according to the affective word based on art theories. With these themes, a generic algorithm is used to select the best reference for each object, balancing various requirements. Finally, we propose a hybrid texture synthesis approach for colorization. To the best of our knowledge, it is the first system which is able to efficiently colorize a gray-scale image semantically by an emotionally controllable fashion. Our experiments show the effectiveness of our system, especially the benefit compared with the previous Markov random field (MRF) based method.

同期刊论文项目
期刊论文 26 会议论文 30 专利 1
同项目期刊论文
期刊信息
  • 《计算机科学技术学报:英文版》
  • 中国科技核心期刊
  • 主管单位:
  • 主办单位:中国科学院计算机技术研究所
  • 主编:
  • 地址:北京2704信箱
  • 邮编:100080
  • 邮箱:jcst@ict.ac.cn
  • 电话:010-62610746 64017032
  • 国际标准刊号:ISSN:1000-9000
  • 国内统一刊号:ISSN:11-2296/TP
  • 邮发代号:2-578
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:505