反向的分析提供一个方便方法通过象幼仔的模量 E,坚硬 H,收益力量 y 和紧张变硬代表 n 那样的一条缩进曲线决定四个有弹性塑料的参数。在这份报纸,从 Dao 模型的一个反向的算法上的数学分析( Dao 等, Acta 母亲, 2001 , 49 , 3899 )被执行,它认为那仅仅 20 E * /0.033 26 和 0.3 < n 0.5 ,反向的算法将由无尺寸的功能产出 n 的二个解决方案 2 。当时,然而,也有 n 的二个答案,这被显示出当时 20E*/0.033 26 并且 0n < 0.1。唯一的 n 能被无尺寸的功能获得 3 而不是 2 在这二个范围。E 和 H 能被一条完整的缩进曲线特别地决定,并且如果 n 是唯一的, y 能是坚定的。而且,从无尺寸的功能获得 n 上的敏感分析 3 或 2 被做了。
The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In this paper, mathematical analysis on a reverse algorithm from Dao model (Dao et al., Acta Mater., 2001, 49, 3899) was carried out, which thought that only when 20 ≤E*/σ0.033≤ 26 and 0.3n≤ 0.5, the reverse algorithm would yield two solutions of n by dimensionless function Π2. It is shown that, however, there are also two solutions of n when 20≤E*/σ0.033≤ 26 and 0≤n0.1. A unique n can be obtained by dimensionless function Π3 instead of Π2 in these two ranges. E and H can be uniquely determined by a full indentation curve, and σy can be determined if n is unique. Furthermore, sensitivity analysis on obtaining n from dimensionless function Π3 or Π2 has been made.