有机电致白光二极管在白光照明和背光源应用中由于具有材料来源广、驱动电压低、节能和环保等优点,受到了广泛关注。目前实现电致白光的方法主要有小分子掺杂、多层器件、激基复合物和缔合物发光以及单分子白光等。其中,单分子白光材料由于要控制能量的不完全传递、单分子实现多色同步发射和优化器件结构等,目前研究得比较少,器件的总体性能也不是很理想。本文从材料合成的角度,简要综述了国内外在单分子白光材料的合成与器件性能优化方面所取得的研究进展,并对下一步需要研究的热点问题作了展望。
On account of the advantages of organic counterparts, the development of organic electroluminescent electroluminescent materials relative to their inorganic materials is one of the forefronts and hot areas of the optoelectronic information materials. White organic light-emitting devices (WOLEDs) have attracted much interest because of their good potential for various lighting applications. An ideal white emission should be composed of the three primary colors (blue, green, and red) and cover the whole visible range from 400 to 700 nm. Most of the WOLEDs reported so far have relied solely on the use of a combination of several organic components that emit different colors of light to fully span the entire visible spectrum. Due to their advantages of ease of fabrication and low-cost processing, the single component white light electroluminescent materials is to date hi$hly sou$ht after owing to potential applications in (i) light-emitting diodes (LEDs), replacements for current illumination devices such as incandescent bulbs and fluorescent lamps, (ii) flat panel displays (FPDs), as the next generation display devices after liquid crystal displays (LCDs), and (iii) electronic paper displays (E-PADs), as an electronic analogue of paper, etc. The present review summarizes and analyzes the progress made about the single component white light electroluminescent materials and devices at home and abroad in the past few years. Some issues to be addressed and hotspots to be further investigated are also put forward and discussed.