芒属植物重金属耐性强,并且是重要的能源植物,其在矿山废弃地植被恢复中的应用备受关注.芒属植物对多种重金属耐性强,但不属于重金属超累积植物.目前的研究认为,根系代谢能力强、根际存在多种共生微生物及抗氧化和光合作用能力强是芒属植物重金属耐性强的重要原因,但更为全面的耐性机理需要深入研究.芒属植物在矿山废弃地植被恢复的应用潜力大,可以清除土壤重金属、改善土壤性质和促进生物多样性发展.本文总结分析了芒属植物生物学特性、重金属耐性特点、机理及其在矿山废弃地植被恢复中的应用潜力,提出了应用芒属植物进行矿山废弃地植被恢复的基本思路,并对芒属植物的重金属耐性机理及应用的未来研究方向进行展望,以期为利用芒属植物开展矿山废弃地植被恢复提供借鉴.
Miscanthus has been recognized as promising candidate for phytoremediation in aban- doned mine land, because of its high tolerance to heavy metals and bioenergy potential. Miscanthus has been reported tolerant to several heavy metal elements. However, it has not been recognized as hyperaccumulator for these elements. The detailed mechanisms by which Miscanthus tolerates these heavy metal elements are still unclear. According to recent studies, several mechanisms, such as high metabolic capacity in root, an abundance of microbes in the root-rbizosphere, and high capacity of antioxidation and photosynthesis might contribute to enhance the heavy metal tolerance of Miscanthus. Miscanthus has a certain potential in the phytoremediation of abandoned mine land, because of its high suitability for the phytostabilization of heavy metals. Moreover, Miscanthus cropping is a promising practice to enhance the diversity of botanical species and soil organism, and to improve soil physical and chemical properties. Here we reviewed recent literatures on the biological characteristics and the heavy metal tolerance of Miscanthus, and its phytoremediation potential in abandoned mine land. A basic guideline for using Miscanthus in abandoned mine land phytoremediation and an outlook for further study on the mechanisms of heavy metals tolerance in Miscanthus were further proposed. We hoped to provide theoretical references for phytoremediation in aban- doned mine land by using Miscanthus.