位置:成果数据库 > 期刊 > 期刊详情页
一种求解非线性约束优化问题的新方法
  • 期刊名称:华中科技大学学报,2006,34(4):67-69
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华中科技大学水电与数字化工程学院,湖北武汉430074, [2]武汉理工大学资源与环境工程学院,湖北武汉430070
  • 相关基金:国家自然科学基金资助项目(50409010,50309013,40572166,50539140);中国博士后科学基金资助项目(2003033464);湖北省自然科学基金资助项目(2005ABA228).
  • 相关项目:粗糙集支持下特征矿化信息挖掘的粒子群演化方法
中文摘要:

针对标准遗传算法的缺陷,提出一种基于实数编码技术的新型自适应混沌遗传算法,求解复杂非线性约束优化问题.算法根据实数编码的特点,依据概率分布函数构造杂交算子,结合混沌动力学特性和人工神经网络理论,设计了一种自适应混沌变异算子,使算法有效维持群体多样性,防止和克服进化中的“早熟”现象,同时采用不需要惩罚因子的直接比较惩罚函数方法,对约束条件加以处理.通过算例数值实验,验证了算法在提高解的精度和加快收敛速度方面都有明显改善.

英文摘要:

The shortcomings of the standard genetic algorithm was discussed. On the basis of real-value encoding technology, the genetic algorithm for self-adaptive chaotic was presented to solve nonlinear constrained optimization with the complexity. In accordance with the characteristics of real-value encoding and probability distribution function, a crossover operator was constructed. In combination of the chaotic dynamic characteristics with the artificial neural network theory, a self-adaptive chaotic mutation operator was designed. The population diversity of the algorithm was kept by this operator to prevent and overcome the premature phenomena in the evolutionary process. Constrained conditions were dealt with by direct comparison penalty function method without penalty factor. It was from the numerical experiments seen that this algorithm showed its good solution precision and convergence speed.

同期刊论文项目
期刊论文 39 会议论文 11 获奖 4
同项目期刊论文