为了克服当前电力系统经济性评估忽视中长期成本、注重短期投资的不足,从元件、费用、时间的角度建立了一个针对电力系统整体的三维全寿命周期成本(LCC)模型,研究了费用维度中设备级、系统级和外部环境成本的费用分解结构。提出了基于LCC的电力系统经济性评估策略,对设备寿命周期不同的系统进行折算,对设备投运时间不同的系统进行分阶段计算,对传统的经济性评估指标进行改进并提出了基于LCC的效能指标。针对某实际500kV变电站和110kV配电网分别进行算例分析,结果表明基于LCC的经济性评估结果更为准确和有效,为进一步深化电力系统资产管理提供了参考。
In order to overcome the neglect of medium- and long-term costs while underestimating short-term investment in current power systems in economic evaluation, a 3-dimensional life cycle cost (LCC) model for the power system as a whole is developed in the perspective of the component dimension, the cost dimension and the time dimension. The cost dimension is studied by structurally analyzing the device layer, the system layer and the cost of surroundings. A series of strategies for economic evaluation based on LCC is presented. The conversion methods are studied for devices with different life cycles. Multistage calculation is applied for devices with different runtimes. The traditional economic evaluation indicators are improved and the efficiency indicators based on LCC are proposed. Case studies are made on an actual 500 kV substation and 110 kV distribution network, respectively. It is shown that the economic evaluation results are much more accurate and valid, providing a reference for further deepening asset management of power systems.