首次基于半解析法利用GRACE(Gravity Recovery and Climate Experiment)双星K波段星间速度误差、GPS接收机轨道误差和加速度计非保守力误差影响累计大地水准面精度的联合模型开展了卫星跟踪卫星模式中轨道参数的需求分析.建议我国将来首颗重力卫星的平均轨道高度设计为400km和平均星间距离设计为220km较优.此研究不仅为我国将来卫星重力测量计划中轨道参数的优化选取以及全球重力场精度的有效和快速估计提供了理论基础和计算保证,同时对将来国际GRACE Follow-On地球重力测量计划和GRAIL(Gravity Recovery and Interior Laboratory)月球重力探测计划的发展方向具有一定的指导意义.
The 21st century is a new epoch that human beings upgrade the cognitive capabilities to the Digital Earth using the SST (Satellite-to-Satellite Tracking) and SGG (Satellite Gravity Gradiometry) techniques. The requirement analysis of orbital parameters in the SST model is carried out for the first time using the combined models of cumulative geoid height errors influenced by the range-rate error of K-band ranging system, orbital error of GPS receiver and nonconservative force error of accelerometer from GRACE satellites based on the semi-analytical method in this study. The simulated results are as follows: (1) The matched relationship of accuracy indexes from key payloads including K-band ranging system, GPS receiver and accelerometer is obtained using the semi-analytical method; (2) The GRACE global gravitational field is estimated based on different average orbital altitudes (500 km, 450 km, 400 km, 350 km, 300 km, 250 km and 200 km) and average intersatellite ranges (110 km, 220 km and 330 km). The optimal design of average orbital altitude 400 km and intersatellite range 220 km is suggested in the future first gravity satellite in China. The reasons why the preferable orbital altitude and intersatellite range are selected are analyzed and demonstrated in detail. This work not only can provide theoretical foundation and calculational guarantee for the optimal selection of orbital parameters and efficient and rapid estimation on the accuracy of global gravitational field in the future satellite gravity measurement in China, but also has some guiding significance to the development direction of future international GRACE Follow-On Earth's gravity measurement mission and GRAIL lunar gravity exploration program.