A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. The example analysis shows that the maximum tensile stress using the same elastic modulus theory is underestimated if the tensile elastic modulus is larger than the compressive elastic modulus. Otherwise,the maximum compressive stress is underestimated. The maximum tensile stress using the material mechanics solution is underestimated when the tensile elastic modulus is larger than the compressive elastic modulus to a certain extent. The error of stress using the material mechanics theory decreases as the span-to-height ratio of beams increases,which is apparent when L/h 5. The error also varies with the distributed load patterns.
A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. The example analysis shows that the maximum tensile stress using the same elastic modulus theory is underestimated if the tensile elastic modulus is larger than the compressive elastic modulus. Otherwise, the maximum compressive stress is underestimated. The maximum tensile stress using the material mechanics solution is underestimated when the tensile elastic modulus is larger than the compressive elastic modulus to a certain extent. The error of stress using the material mechanics theory decreases as the span-to-height ratio of beams increases, which is apparent when L/h ≤ 5. The error also varies with the distributed load patterns.