因为许多先进功率管理技术被采用,现代处理器的负担功率范围极大地被扩大频率可伸缩,增加的涡轮,和近阀值的电压(NTV ) ,例如动态电压技术。然而,因为力量交货的效率与不同负担条件极大地变化,常规力量交货图案不能在全部电压光谱上维持高效率,并且节省的获得的力量可以是由在力量交货的力量损失的偏移量。我们建议 SuperRange,一个宽运作的范围力量交货单位。SuperRange 补充在薄片上电压管理者和离开薄片电压管理者的功率交货能力。在 SuperRange 上,我们分析它的力量变换特征并且建议一个电压管理者(VR ) 知道的力量管理算法。而且因为越来越多的核心在一个 singe 薄片上是综合的,多重 SuperRange 单位能服务同样基本的积木造,以一个高度可伸缩的方法,有更大的力量能力的更强大的力量交货分系统。试验性的结果表演 SuperRange 单位提议 1x 和 1.3x 更高比另外的二常规力量交货在 NTV 区域策划并且展出一般水准的驱动变换效率(PCE ) 在全部运作的范围上的 70% PCE。它也展出优异跳回到抑制力量的系统。
The load power range of modern processors is greatly enlarged because many advanced power management techniques are employed, such as dynamic voltage frequency scaling, Turbo Boosting, and near-threshold voltage (NTV) technologies. However, because the efficiency of power delivery varies greatly with different load conditions, conventional power delivery designs cannot maintain high efficiency over the entire voltage spectrum, and the gained power saving may be offset by power loss in power delivery. We propose SuperRange, a wide operational range power delivery unit. SuperRange complements the power delivery capability of on-chip voltage regulator and off-chip voltage regulator. On top of SuperRange, we analyze its power conversion characteristics and propose a voltage regulator (VR) aware power management algorithm. Moreover, as more and more cores have been integrated on a singe chip, multiple SuperRange units can serve as basic building blocks to build, in a highly scalable way, more powerful power delivery subsystem with larger power capacity. Experimental results show SuperRange unit offers lx and 1.3x higher power conversion efficiency (PCE) than other two conventional power delivery schemes at NTV region and exhibits an average 70% PCE over entire operational range. It also exhibits superior resilience to power-constrained systems.