位置:成果数据库 > 期刊 > 期刊详情页
Propulsive matrix of a helical flagellum
  • ISSN号:1674-1056
  • 期刊名称:Chinese Physics B
  • 时间:2014.11
  • 页码:114703 (6 pp.)-114703 (6 pp.)
  • 分类:O151.21[理学—数学;理学—基础数学] Q93-333[生物学—微生物学]
  • 作者机构:[1]Department of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China, [2]School of Natural Sciences, University of California, Merced, California, USA, [3]Department of Physics and Center for Nonlinear Dynamics, University of Texas at Austin, Austin, Texas, USA
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant No. 11104179), the Shanghai Pujiang Program, China (Grant No. 12PJ1405400), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China (Grant No. SHDP201301), and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 14ZZ030).
  • 相关项目:细菌外形对集体运动影响的实验研究
中文摘要:

We study the propulsion matrix of bacterial flagella numerically using slender body theory and the regularized Stokeslet method in a biologically relevant parameter regime. All three independent elements of the matrix are measured by computing propulsive force and torque generated by a rotating flagellum, and the drag force on a translating flagellum. Numerical results are compared with the predictions of resistive force theory, which is often used to interpret micro-organism propulsion. Neglecting hydrodynamic interactions between different parts of a flagellum in resistive force theory leads to both qualitative and quantitative discrepancies between the theoretical prediction of resistive force theory and the numerical results. We improve the original theory by empirically incorporating the effects of hydrodynamic interactions and propose new expressions for propulsive matrix elements that are accurate over the parameter regime explored.

英文摘要:

We study the propulsion matrix of bacterial flagella numerically using slender body theory and the regularized Stokeslet method in a biologically relevant parameter regime. All three independent elements of the matrix are measured by computing propulsive force and torque generated by a rotating flagellum, and the drag force on a translating flagellum. Nu- merical results are compared with the predictions of resistive force theory, which is often used to interpret micro-organism propulsion. Neglecting hydrodynamic interactions between different parts of a flagellum in resistive force theory leads to both qualitative and quantitative discrepancies between the theoretical prediction of resistive force theory and the numerical results. We improve the original theory by empirically incorporating the effects of hydrodynamic interactions and propose new expressions for propulsive matrix elements that are accurate over the parameter regime explored.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406