提出了带有Fischer—Burmeister非线性互补(NCP)数的非单调QP-free非可行域算法.根据优化问题的一阶KKT条件,利用乘子和NCP函数,得到非光滑方程,给出解这个非光滑方程的迭代算法.该算法包含原始一对偶变量,在局部意义下,可看成关于一阶KKT最优条件的扰动牛顿一拟牛顿迭代算法.在线性搜索时,此算法采用非单调方法.给出的算法是可实现的并具有全局收敛性,且在适当假设下具有超线性收敛性.
A new QP-free infeasible method with nonmonotone line search techniqueis and the Fischer- Burmeister NCP function is proposed for minimizing a smooth function subject to smooth inequality constraints. This iterative method is based on the solution of nonsmooth equations obtained by the multiplier function and the Fischer- Burmeister NCP function for the KKT first-order optimality conditions. Nonmonotone line search techniques are adopted on line searches. This method is implementable and globally convergent. The method proves to have superlinear convergence rate under some mild conditions.