位置:成果数据库 > 期刊 > 期刊详情页
求解job-shop调度问题的量子粒子群优化算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60474030)
中文摘要:

针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确定目标函数,并按照量子粒子群优化算法的进化规则在调度空间内搜索最优解。仿真实例结果证明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法和粒子群优化算法。

英文摘要:

Dealing with such disadvantages of PSO algorithm as finite sampling space, being easy to run into prematurity, QPSO algorithm was proposed to be applied to solve job-shop scheduling problem (JSSP), During the scheduling process, obeying to some particular regulations, every scheduling was encoded into a matrix, and this matrix was regarded as a particle in QPSO algorithm ; the objective function was determined based on the objective of scheduling, According to evolution formulae of QPSO algorithm, the scheduling space was searched for the global optimization. The simulation results show that this algorithm has better global convergence ability and more rapid convergence, and it is superior to genetic algorithm (GA) and PSO algorithm .

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049