对于任意给定的正整数k≥1,环R上的元x,y的k-Jordan乘积定义为{x,y}k={{x,y}(k-1),y}1,其中{x,y}0=x,{x,y}1=xy+yx.假设R是含有单位元与非平凡幂等元的环,f∶R→R是满射。文章证明了在一定的假设条件下,f满足{f(x),f(y)}k={x,y}k对所有的x,y∈R成立当且仅当f(x)=λx对所有的x∈R成立,其中λ∈Z(R)(R的中心)且λk+1=1.作为应用,给出了素环与von Neumann代数上保持此类性质映射的完全刻画。
For any integer k≥1, the k-Jordan product of two elements x,y in a ring R is defined by {x,y}k= { {x,Y}k-1 ,y}1 ,where {x,y}0=x and {x,y}1=xy+yx. Assume that R is a unital ring containing a non-trivial idempotent and f :R→R is a surjective map. It is shown that, under some mild conditions,f satis-lies {f(x) ,f(y)}k={x,y}k for all x,y∈R if and only if there exists λ∈Z(R) (the center of R) with λk+1=1 such that f(x)=λx holds for all x∈R. As an application, such maps on prime rings and yon Neumannalgebras are characterized, respectively.