位置:成果数据库 > 期刊 > 期刊详情页
基于扩展卡尔曼滤波的回声状态网络在线训练算法
  • ISSN号:0254-3087
  • 期刊名称:《仪器仪表学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工业大学自动化测试与控制研究所,哈尔滨150001
  • 相关基金:教育部新世纪优秀人才支持计划(No.NCET-10-0062);教育部高等学校博士学科点专项科研基金(No.20092302110013); 装备预研重点基金(No.9140A17040409HT01)资助
中文摘要:

针对在线应用中回声状态网络(echo state network,ESN)的储备池适应性和训练算法效率问题,文中提出一种基于扩展卡尔曼滤波(extended kalman filter,EKF)的ESN在线训练算法。该算法以ESN的储备池参数以及输出连接权矩阵为目标参数,利用EKF对其进行联合训练提高储备池适应性,并能够有效地克服交叉验证参数选择导致的ESN训练效率下降问题。Lorenz混沌时间序列以及移动通信话务量时间序列预测实验证明,新方法可显著提升ESN算法的总体计算效率。

英文摘要:

A novel on-line training algorithm base on Extended Kalman Filter(EKF) is proposed for the adaptation of reservoir and training efficiencies Echo State Network(ESN).The output weight-matrix and parameters of reservoir are selected as objective parameters and trained simultaneously by EKF.The adaptive property of reservior is improved by simultaneously training the objective parameters,which also can overcome the poor training efficiencies resulted from cross validation for parameter selection.The simulation experiments on benchmark data set Lorenz and mobile traffic time series show that the method proposed in this paper can improve the training efficiencies of the ESN when the parameters selection of reservoir are considered.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《仪器仪表学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国仪器仪表学会
  • 主编:张钟华
  • 地址:北京东城区北河沿大街79号
  • 邮编:100009
  • 邮箱:yqyb@vip.163.com
  • 电话:010-84050563
  • 国际标准刊号:ISSN:0254-3087
  • 国内统一刊号:ISSN:11-2179/TH
  • 邮发代号:2-369
  • 获奖情况:
  • 1983年评为机械部科技进步三等奖,1997年评为中国科协优秀科技期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:42481