为了满足应急救援系统对移动机器人速度和地形适应能力的要求,设计了新型的八轮腿移动机器人。结构方面,机器人通过改变两副轮腿夹角实现姿态调整,并通过抬高轮腿结构实现越障,以此来提高地形通过能力。控制方面,利用劳斯方程建立机器人动力学模型,在利用滑模控制实现机器人轨迹跟踪过程中,为减小稳态误差,滑模控制的切换函数采用了积分形式;为了避免切换增益过大带来的抖振,利用积分增益实现切换增益的自调整。由仿真结果可知,机器人轨迹跟踪误差能以较小的超调和较快的速度趋近零。
A new type of eight--wheel--legged mobile robot was designed to meet the needs of the emergency rescue system for mobile robots, which should have the ability of fast speed and terrain requirements. In the structure, this robot could change the angle among the legs to achieve attitude adjustment, and could raise wheels and legs to complete jump over, which could improve the ability of terrain through. In the control, Rolls equation was used to obtain the dynamic model of the robot. Sliding mode control was used for robot trajectory tracking. To reduce the steady--state error, switc- hing function adopted integral type. In order to avoid chatter phenomenon, switching gain could be self--adjustment by integral form. From the simulation results, the tracking error of the robot can approach zero with fast velocity and small overshoot.