We investigate the properties of strange quark matter(SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation,charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density,the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×1019 Gauss when the density is fixed at two times the normal nuclear saturation density.
We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×10^19 Gauss when the density is fixed at two times the normal nuclear saturation density.