该文提出一种基于原型理论的极化SAR图像表达方法。该方法首先利用原型理论构建原型集,然后以正则化逻辑回归函数计算测试样本与每个原型集的相似度,最后通过集成投影获得图像的特征表达。在极化SAR数据上的非监督分类实验结果表明,该方法能够准确表达图像中各类地物的极化特性,达到较好的分类效果。
This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our method can efficiently represent polarimetric signatures of different land covers and yield satisfactory classification results.