位置:成果数据库 > 期刊 > 期刊详情页
Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
  • ISSN号:1004-4132
  • 期刊名称:Journal of Systems Engineering and Electronics
  • 时间:2013.4.20
  • 页码:324-334
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China, [2]Department of Information Management, Oriental Institute of Technology, Taipei 220, China
  • 相关基金:This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20114307120032) and the National Natural Science Foundation of China (71201167).
  • 相关项目:预约机制和物联网环境下的集装箱堆场箱位优选干扰管理模型与算法
中文摘要:

As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.

英文摘要:

As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术:英文版》
  • 主管单位:中国航天机电集团
  • 主办单位:中国航天工业总公司二院
  • 主编:高淑霞
  • 地址:北京海淀区永定路52号
  • 邮编:100854
  • 邮箱:jseeoffice@126.com
  • 电话:010-68388406 68386014
  • 国际标准刊号:ISSN:1004-4132
  • 国内统一刊号:ISSN:11-3018/N
  • 邮发代号:82-270
  • 获奖情况:
  • 航天系统优秀期刊奖,美国工程索引(EI)和英国科学文摘(SA)收录
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:242