位置:成果数据库 > 期刊 > 期刊详情页
一种用于模式识别的动态RBF神经网络算法
  • ISSN号:1000-8608
  • 期刊名称:《大连理工大学学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]大连理工大学电子与信息工程学院,辽宁大连116024
  • 相关基金:国家自然科学基金资助项目(60374064).
中文摘要:

对径向基函数(RBF)神经网络在数据分类中的应用进行了研究.提出一种应用于模式识别的动态RBF训练算法,该算法使用区域映射误差函数并结合资源分配网络(RAN)的“新性”(novelty)条件动态调整网络的隐层节点数,从而可以更加有效地进行模式识别.二分类样本和建筑材料CaO-Al2O3-SiO2系统仿真表明,该改进算法使误差下降更快,减少了训练次数,可以获得精简的网络结构,从而使网络具有较高的泛化能力.

英文摘要:

The application of radial basic function (RBF) neural network in the data classification is studied. A new dynamic training algorithm for RBF network used in pattern recognition is proposed. It uses the regional mapping error function and the novelty condition of the resource-allocating network (RAN) to dynamically adjust the nodes in the hidden layer of the network, and makes the pattern recognition more efficient. By the simulation result of the modeling of synthetic two-class problem and CaO-Al2O3-SiO2 system, it is proven that the algorithm can make the descending speed of error more quick and shorten the training times, thus the network with the concise structure is obtained and better generalization is achieved.

同期刊论文项目
期刊论文 44 会议论文 19 获奖 6 著作 7
同项目期刊论文
期刊信息
  • 《大连理工大学学报》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:大连理工大学
  • 主编:程耿东
  • 地址:大连理工大学学报编辑部
  • 邮编:116024
  • 邮箱:xuebao@dlut.edu.cn
  • 电话:0411-84708608
  • 国际标准刊号:ISSN:1000-8608
  • 国内统一刊号:ISSN:21-1117/N
  • 邮发代号:8-82
  • 获奖情况:
  • 国家“双百”期刊,1997年获首届中国期刊奖提名奖、获第二届全国优秀...,1992年获全国优秀科技期刊评比三等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:15881