位置:成果数据库 > 期刊 > 期刊详情页
利用VLRBP神经网络改善汇率预测
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金(No.60474030).
中文摘要:

分别使用基于滑动窗口的VLRBP神经网络模型和基于C—C相空间重构的VLRBP神经网络模型及ARIMA—GARCH模型对欧元汇率时间序列建模和预测,通过比较发现基于C—C相空间重构的VLRBP神经网络对于含有大量非线性成分的欧元汇率时间序列的预测比较准确。同时,为了提高基于滑动窗口的VLRBP网络的泛化性能,提出在训练VLRBP神经网络时应用浴盆曲线方法选取隐层神经元个数和滑动窗口尺寸。

英文摘要:

It builds a sliding window neural networks model,a neural networks model which is based on phase space reconstruction and an ARIMA-GARCH model,and then the euro foreign exchange rate is forecasted by using the three models.The result shows that the VLRBP neural networks which is based on C-C phase space reconstruction produces better porformance than the other methods in forecasting the euro foreign exchange rate which has a great amount nonlinear components.To improve the generalization performance of the sliding window VLRBP neural networks,it presents a bathtub curve method when searching the size of the hidden neuron and the sliding window of the VLRBP neural networks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887