位置:成果数据库 > 期刊 > 期刊详情页
FH—MOEA:基于快速计算空间超体积贡献机制的多目标优化进化算法
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国科学技术大学电子科学与技术系,自然计算与应用实验室,安徽合肥230027
  • 相关基金:Foundation item:Supported by National Natural Science Foundation of China (60401015,60572012), Natural Science Foundation of Anhui province (050420201).
中文摘要:

研究在多目标优化进化算法中引入强选择压力机制,以促使搜索群体在有效保证多样性的前提下向Pareto最优前沿迅速收敛,并引入空间超体积测度.针对当前空间超体积测度计算代价高的问题,提出了一种基于空间切片的快速空间超体积贡献计算方法FH.基于该方法,发展出一种基于快速计算空间超体积贡献机制的多目标进化算法(FH—MOEA),并应用于解决复杂的多目标优化问题.用一组测试问题对算法性能进行检验,实验结果表明,该算法在收敛性和分布性两方面均比著名的NSGA-Ⅱ算法有显著提高.

英文摘要:

The method for incorporating strong selection pressure was introduced into multi-objective evolutionary optimization algorithms (MOEAs) to force the evolution population approaches rapidly towards the Pareto optimal front with a spread as uniform as possible over the Pareto front. An effective measure called "hyper-volume contribution" was adopted to provide the strong selection pressure. Based on the fast method for calculating hyper-volume contribution proposed, a new multi-objective optimization evolutionary algorithm multi-objective evolutionary algorithm based on fast hyper-volume contribution (FH-MOEA) was proposed for the complex multi objective optimization problem (MOP) tasks. Via a suite of designed experiments, it is distinctly indicated that FH-MOEA has a great advantage over the famous MOEA "NSGA- Ⅱ " in terms of both convergence and diversity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237