设R为一个环,如果对任意a,b,c∈R,aRbRc=0蕴涵aRcRb=0,则称R为强自反环.给出强自反环的一些性质,利用强自反环给出对称环的一个刻画.证明了如下结果:①R是symmetric环当且仅当R是强自反环和IFP环;②半素环是强自反环,但反之不成立;③R是强自反环当且仅当对任意a1,a2,…,an∈R(n≥3),a1Ra2Ra3…Ran=0蕴涵ai1Rai2Rai3…Rain=0,其中i1i2i3…in是1,2,3,…,n的任意一种排列;④设R为quasi-Abel环,x∈R为exchange元,则x为clean元.
A ring R is called strongly reflexive if for any a,b,c∈R,aRbRc=0 implies aRcRb=0.Some properties of strongly reflexive rings are discussed in this paper: ① R is a symmetric ring if and only if R is a strongly reflexive ring and IFP ring;② Semiprime rings are strongly reflexive,but the converse is not true;③ R is a strongly reflexive ring if and only if for any a1,a2,…,an∈R(n≥3),a1Ra2Ra3…Ran=0 implies ai1Rai2Rai3…Rain=0,where i1i2i3…in∈Sn;④ Let R be a {quasi-Abel} ring and x∈R.If x is an exchange element of R,then x is a clean element.