位置:成果数据库 > 期刊 > 期刊详情页
基于孤立节点分离策略的改进鲁汶算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:兰州交通大学电子与信息工程学院,兰州730070
  • 相关基金:国家自然科学基金资助项目(61163010); 兰州市科技计划项目(2014-1-171); 金川公司预研基金资助项目(JCYY2013012)
中文摘要:

鲁汶算法(LM)是基于模块度优化的复杂网络社区发现算法,有关模块度的现有研究中没有计算节点离开原属社区后模块度增益的方法。针对这一不足,基于模块度的定义和节点合并后模块度增益的计算方法,推导出了节点离开原属社区后模块度增益的计算方法,完善了该领域的理论研究。针对鲁汶算法对存储空间需求高的缺点,提出了基于孤立节点分离策略的改进鲁汶算法,该算法在每次迭代中将输入网络的孤立节点提前分离出去,只令其中的连通节点实际参与迭代过程,并在存储社区发现结果时将孤立节点和非孤立节点分开存储。基于真实网络的相关实验结果表明,采用孤立节点分离策略的改进方法,使算法对存储空间的需求减少了40%以上,并进一步缩短了算法的运行时间。因此,改进后的算法在处理真实网络时更具优势。

英文摘要:

Louvain Method(LM) is an algorithm to detect community in complex network based on modularity optimization. Since there is no method to calculate the gain of modularity after nodes leave their community in the existing research, a method was presented to calculate the modularity-gain after nodes leave their community based on the definition of modularity and the method for calculating the modularity-gain after nodes merge. Secondly, aiming at the problem that LM requires large memory space, an improved algorithm was proposed with the strategy of separating isolated nodes. In each iteration of the algorithm, isolated nodes of the input network were separated in advance, only the connected nodes of the input network can actually participate in the iterative process. Isolated nodes and non-isolated nodes were stored respectively when storing communities detected. The experimental results based on real networks showed that the requirement of memory space was reduced by more than 40% in the improved algorithm, and the running time of the algorithm was further reduced.Experimental results indicate that the improved algorithm has more advantages in dealing with real networks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679