采用的 TiO 2 锐钛矿(001 )-(1 牤獥?
Employing TiO2 anatase (001)-(1 × 4), futile (110) and futile (011)-(2× 1) single crystal surfaces, we compre- hensively studied the effects of TiO2 surface structures on the competitive adsorption of water and methanol by means of low energy electron diffraction, thermal desorption spectra and X-ray photoelectron spectroscopy. The relative adsorption strengths of chemisorbed methanol and water vary with the TiO2 surface structures and the ad- sorption sites. This leads to TiO2 surface structure-dependent competitive adsorption of water and methanol. The chemisorption of CH3OH on TiO2 anatase (001)-(1 × 4) surface is seldom affected by pre-covered water at low cov- erages but is affected by pre-covered water at high coverages; the chemisorption of CH3OH on TiO2 rutile (110) surface is seldom affected by pre-covered water; and the chemisorption of CH3OH on TiO2 rutile (011)-(2 × 1) sur- face is affected by pre-covered water even at low coverages. These results deepen the fundamental understandings of surface chemistry on TiO2 surfaces.