位置:成果数据库 > 期刊 > 期刊详情页
基于双向主题模型的协同过滤算法
  • ISSN号:0529-6579
  • 期刊名称:《中山大学学报:自然科学版》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]顺德职业技术学院电子与信息工程系,广东顺德528333, [2]中山大学信息科学与技术学院,广东广州510006, [3]中山大学软件研究所,广东广州510275
  • 相关基金:国家自然科学基金资助项目(61003140,61033010);中山大学高性能与网格计算平台资助项目
中文摘要:

主题模型可以学习用户和推荐项目的潜在主题分布。提出了一种基于双向主题模型的协同过滤算法,分别学习用户和推荐项目的潜在主题分布用于推荐服务。在真实的数据集上实验验证,该算法的性能均优于几个经典的协同过滤算法。

英文摘要:

Topic model can be used to learn the latent topic distribution. A new collaborative filtering al- gorithm based on dual collaborative topic regression to learn the user's latent topic distribution and the item's latent topic distribution for recommendation is proposed. On a large real-world dataset, the experi- ment results illustrate that the approach achieves a better performance than the state-of-the art collabora- tive filtering methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中山大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:中山大学
  • 主编:王建华
  • 地址:广州市新港西路135号
  • 邮编:510275
  • 邮箱:xuebaozr@mail.sysn.edu.cn
  • 电话:020-84111990
  • 国际标准刊号:ISSN:0529-6579
  • 国内统一刊号:ISSN:44-1241/N
  • 邮发代号:46-15
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,广东省优秀科学技术期刊一等奖,《中文核心期刊要目总览》综合性科技类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18509