设F是支撑在(-∞,∞)上的分布函数.口是一个取有限个整数值的非负随机变量,F#v为F的U重卷积.在一定条件下,本文得到了如下结论:对任意0≤y〈∞,F#v∈S(y)茸F∈S(y).特别地,若口三挖,”≥2,本文得到了支撑在(一。。,。。)上的S(y)族的卷积根的封闭性.上述所得结果推广了[2]对应结果.
Let F on (- ∞,∞) be a distribution function and F#v is the v- fold convolution of F, where v is a nonnegative random variable taking only a finite number of integer-values. Under certain conditions,the paper obtains the following result.for any 0≤ y∞,F#v S(y)→←F∈S(7). Particularly ,if v≡n ,n≥ 2, we give the closure of S(7) under convolution roots supported on (- ∞,∞). The above obtained results extend the corresponding results of E23.