位置:成果数据库 > 期刊 > 期刊详情页
协同过滤中有影响力近邻的选择
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学计算机与信息学院,合肥232009, [2]安徽理工大学经济与管理学院,安徽淮南232001, [3]闽南师范大学计算机学院,福建漳州363000
  • 相关基金:国家自然科学基金项目(61273292;61303131;51474007); 教育部人文社会科学研究青年基金项目(13YJCZH077); 福建省高校新世纪优秀人才支持计划项目
中文摘要:

数据稀疏性制约着协同过滤的推荐性能,为此,首先根据用户评分数量定义了用户的影响因子,在计算用户之间的相似性时,增加了影响因子衡量用户关系;其次,根据用户评分质量定义了有影响力用户群体.在此基础上,结合用户的评分数量和评分质量,使选择的有影响力近邻最大程度上作用于推荐过程.实验结果表明,所提方法能显著提高推荐性能.

英文摘要:

The recommendation performance of collaborative filtering is restricted by data sparsity. To solve this problem,the factor of user influence was thereafter defined according to the number of ratings to measure the relationship while calculating the similarity between users. Then,the influential user group was introduced according to the rating quality. On this basis,the chosen influential neighbor can work on the process of recommendations via combining the number of user ratings with the rating quality.Experiments show that the proposed method can significantly improve the recommendation performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684