A concurrent multiscale method of coupling atomistic and continuum models is presented in the two-dimensional system. The atomistic region is governed by molecular dynamics while the continuum region is represented by constructing the mass and stiffness matrix dependent on the coarsening of the grids, which ensures that they merge seamlessly.The low-pass phonon filter embedded in the handshaking region is utilized to effectively eliminate the spurious reflection of high-frequency phonons, while keeping the low-frequency phonons transparent. These schemes are demonstrated by numerically calculating the reflection and transmission coefficient, and by the further application of dynamic crack propagation subjected to mode-I tensile loading.
A concurrent multiscale method of coupling atomistic and continuum models is presented in the two-dimensional system. The atomistic region is governed by molecular dynamics while the continuum region is represented by construct- ing the mass and stiffness matrix dependent on the coarsening of the grids, which ensures that they merge seamlessly. The low-pass phonon filter embedded in the handshaking region is utilized to effectively eliminate the spurious reflection of high-frequency phonons, while keeping the low-frequency phonons transparent. These schemes are demonstrated by numerically calculating the reflection and transmission coefficient, and by the further application of dynamic crack propa- gation subjected to mode-I tensile loading.