因为房间的简洁,造生物计算系统的关键可以在基于 cellcell 通讯构造分布式的系统躺着。由一个数学模型指导了,在我们设计了,模仿,并且构造在细菌 Escherichia coli 的基因双分支结构的这研究。这基因双分支结构由一个控制房间和二个记者房间组成。控制房间能根据输入激活不同记者房间。二个察觉到治安法官的信号分子, 3OC12-HSL 和 C4-HSL,形成在控制房间和记者房间之间的电线。这研究是向可伸缩的生物计算的步,并且它可以在 biocomputing, biosensing,和 biotherapy 有许多潜在的应用。
Because of the simplicity of cells, the key to building biological computing systems may lie in constructing distributed systems based on cell-cell communication. Guided by a mathematical model, in this study we designed, simulated, and constructed a genetic double-branch structure in the bacterium Escherichia coli. This genetic double-branch structure is composed of a control cell and two reporter cells. The control cell can activate different reporter cells according to the input. Two quorum-sensing signal molecules, 3OC12- HSL and C4-HSL, form the wires between the control cell and the reporter cells. This study is a step toward scalable biological computation, and it may have many potential applications in biocomputing, biosensing, and biotherapy.