针对角对称矩阵的特征值分解问题,提出了一种新的排序Jacobi算法(S-Jacobi).该算法利用Jacobi旋转中的内角和外角实现了特征值的自动排序.仿真结果表明,S-Jacobi的收敛条件在实际中容易满足,而且其收敛速度优于传统的无特征值排序的Jacobi算法.另外,为S-Jacobi的并行实现提出的旋转度计算电路与传统Jacobi算法的情况相比,只需要少量的额外硬件资源.
For the eigenvalue decomposition in angle symmetric matrices,a new sorted Jacobi algorithm(S-Jacobi) is proposed.This algorithm sorts the eigenvalues automatically by exploiting both inner and outer angles in each Jacobi rotation.With the condition of convergence that can be easily satisfied in practice,the convergence speed of S-Jacobi is faster than conventional Jacobi algorithms that do not involve eigenvalue sorting.Furthermore,the rotation angle computing circuit proposed for the parallel implementation of S-Jacobi needs only small additional hardware with respect to the case of conventional Jacobi algorithms.