位置:成果数据库 > 期刊 > 期刊详情页
基于谱间结构相似先验的高光谱压缩感知重构
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西北工业大学电子信息学院,西安710129, [2]韶关学院计算机科学学院,韶关512005
  • 相关基金:国家自然科学基金(61071171)资助课题
中文摘要:

在高光谱压缩感知重构中,充分利用图像的先验信息能有效提升算法的重构精度。现有重构算法均未考虑高光谱图像的谱间结构冗余信息,该文提出一种基于谱间结构相似先验的高光谱压缩感知重构方法。该方法通过谱间结构冗余定义高光谱结构图像,以结构图像为基础,设计一个压缩感知重构正则项,再结合高光谱图像的空间相关性和谱间统计相关性,提出一种新的压缩感知高光谱图像联合重构方案,并设计一种基于变量拆分的有效的求解算法。实验表明,在相同观测值数目下,该文算法的重构质量明显优于现有算法。

英文摘要:

In the hyperspectral compressive sensing reconstruction method, the exploitation of the prior information of the hyperspectral imagery can improve the reconstruction performance. As the existing methods have not taken into account the spectral structural redundancy information of hyperspectral imagery, a novel reconstruction method via spectrum structure similarity for hyperspectral compressive sensing is proposed in this paper. Structure images are proposed via spectrum structure similarity and a new regularizer is given based on structure images. It combines the new regularizer and other regularizers,so that the spatial redundancy, spectral statistical redundancy and spectral structural redundancy in hyperspectral imagery can all be exploited. In addition, an efficient solving algorithm based on variable-splitting is developed for the method. Experimental results show that the proposed method is able to reconstruct the hyperspectral imagery more efficiently than the current methods at the same measurement rates.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739