位置:成果数据库 > 期刊 > 期刊详情页
面向移动群智感知的多任务分发算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393.01[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京信息科技大学计算机学院,北京100101, [2]网络文化与数字传播北京市重点实验室(北京信息科技大学),北京100101
  • 相关基金:基金项目:国家自然科学基金资助项目(61370065,61502040);北京市优秀人才培养资助青年骨干个人项目(2014000020124G099);网络文化与数字传播北京市重点实验室资助项目(ICDD201406);现代测控技术教育部重点实验室/机电系统测控北京市重点实验室资助项目(KF20151123205).
中文摘要:

针对在移动群智感知中基于机会通信完成数据传输会消耗大量时间成本的问题,提出了一种基于中枢节点的多任务分发(HTA)算法。该算法利用节点在移动网络中社交关系属性不同的特点,通过中枢节点选择算法将部分节点作为中枢节点,并将其用于协助任务请求节点分发任务。在任务请求节点与中枢节点相遇时,同时给中枢节点本身和它的从属节点分配任务,并由中枢节点负责向从属节点分发任务与回收任务结果。基于The ONE模拟器进行实验,与在线任务分配(NTA)算法相比,HTA算法时间成本平均降低了24.9%,同时任务完成率平均提高150%。实验结果表明,HTA算法能够提高任务的完成速度,降低时间成本消耗。

英文摘要:

Data transmission based on opportunistic communication in mobile crowdsensing may take a long period of time. To address this issue, a new Hub-based multi-Task Assignment (HTA) algorithm was proposed. In this algorithm, some nodes were selected to perform as the hubs which could help the requester node to deliver the tasks, according to the different characteristics of the social relationship of the nodes in mobile networks. When the task requester encountered a hub node, the hub node itself and its slave nodes were assigned tasks. After that, the hub node would distribute the tasks to the salve nodes, and received the results from them. Simulations were conducted on The ONE simulator. Compared with the online Task Assignment (NTA) algorithm, HTA algorithm reduced the time cost by 24.9% on average and improved the task completion ratio by 150% on average. The experimental results demonstrate that HTA algorithm can accelerate the accomplishment speed of the task and reduce the time cost.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679