讨论了如下四阶半线性椭圆型问题{△2u+-m△u=f(x,u),x∈Ω,u=△u=0,x∈aΩ多解的存在性.其中函数f(x,t)关于t在无穷远点处具有渐近线性性;Ω是RN中的有界光滑区域且N>4.很容易验证,f(x,t)不满足著名的Ambrosetti-Rabinowitz型条件,简称(AR)条件,即(E)θ>0,M>0,使得0<F(x,t)(△)∫t0f(x,s)ds≤1/2+θg(x,t)t对a.e.x∈Ω和(V)|t|≥M都一致成立.由于此条件在山路引理的运用之中非常重要,故该文选择了山路引理的另一种表示形式,进而证明了当f(x,t)满足适当条件的情形下,上述问题存在着多重的非零解.
The paper discusses the existence of multiple solutions for the following fourth-order semilinear elliptic problem {△2u+m△u=f(x,u),x(E)Ω,u=△u=0,x(E) (a)Ω,where f(x,t) is asymptotically linear with respect to t at infinity.Ω (E) RN is a smooth bounded domain and N > 4.It is easy to verify that f(x,t) does not satisfy the famous Ambrosetti-Rabinowitz type condition (for short,(AR) condition),i.e.(E) θ > 0,M > 0,such that 0 < F(x,t) (△)∫10f(x,s)ds≤1/2+θf(x,t)t uniformly for a.e.x (E) Ω and (V) |t| ≥ M.By a variant version of Mountain Pass Theorem,we show that the problem has multiple solutions under suitable assumptions of f(x,t).