这篇论文与经由交换系统稳定性理论交换拓扑学学习复杂推迟的网络的本地指数的同步。由一个普通单一的矩阵,首先,同步的问题被转变成一些线性交换延期系统的稳定性分析。然后,当所有子网是 synchronizable 时,足够的状况以在一个平均居住时间计划下面保证同步问题的解决之可能性的线性矩阵不平等(LMI ) 被给的一个延期依赖者。我们扩大这结果到并非所有子网是 synchronizable 的盒子。是否,除了平均居住时间被看那 synchronizable 和 non-synchronizable 子网的全部的激活时间的比率满足一个额外的条件,当时,这个问题也是可解决的。有交换拓扑学的推迟的动态网络的二个数字例子被给,它表明获得的结果的有效性。
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.