基于Li_4Ti_5O_(12)结构,设计双离子取代反应,制备了3种新型锂离子负极材料Li_3Ti_4CrMO_(12)(M=Ni、Ca、Mg),这些取代型负极材料具有与钛酸锂相同的晶体结构.使用球磨、喷雾造粒以及固相合成工艺制备出一次粒子为200~300nm,二次颗粒为多孔球形的新型负极材料Li_3Ti_4CrMO_(12),并对其电化学性能进行了测试.循环充放电试验结果表明,制备的3种材料中,镁铬钛酸锂(Li_3Ti_4CrMgO_(12))具有较高的放电比容量和较好的循环稳定性,0.2C下首次放电比容量达158.6mA·h/g.10次循环后,放电容量为148.1mA·h/g,充电容量为149.1mA·h/g,容量保持率和库伦效率均在99%以上,显示了潜在的应用价值.循环伏安(CV)和电化学阻抗谱(EIS)分析表明,上述优良性能来自于Mg、Cr取代后导致的材料界面电阻的下降.
Based on the crystal structure of Li_4Ti_5O_(12),three new compounds with chemical composition of Li_3Ti_4CrMO_(12)(M=Ni、Ca、Mg)were synthesized by replacing Li and Ti ions with Cr and M ions.The newly prepared anodic materials showed similar crystal structure to their mother compound Li_4Ti_5O_(12).Porous spheres of the anodic materials with grain size around 200—300 nm were obtained through a combined method of nano grinding and spray drying.The electrochemical tests revealed different results.Among the three kinds of anodic materials,Li_3Ti_4CrMgO_(12) presents the best electrochemical performance.The initial charging capacity attains 158.6mA·h/g,which is very close to its theoretical capacity.After10 cycles the discharge capacity remains 148.1 mA·h/g,while the charge capacity is 149.1 mA·h/g.Such cyclic performance creates good capacity retention and high columbic efficiency(〉99%)and suggests great potential for industrial application.The subsequent cyclic voltammetry(CV)and electrochemicalimpedance spectroscopy(EIS) measurements further illustrated that the above-mentioned good electrochemical behaviors stemmed from the decline in the interfacial resistance generated by the replacement of Li/Ti with Mg/Cr.